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quasi-one-dimensional crystal 

De-gang Zhang, You-quan Dan and Ke Fang 
Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, People’s 
Republic of China 

Received 4 July 1988 

Abstract. Mekhankov and Fedyanin have obtained several solutions for the perturbed S3 
equation. We find the one-envelope-soliton solutions of the same equation by the Hirota 
bilinear method. 

A wide class of quasi-one-dimensional systems of quantum statistical mechanics may 
be described to a good approximation by the following model Hamiltonian: 

H = E O + p C  N k + p  C ( a ~ a k + l + a : + l a k ) + ~ ’ C ( a : a : + l - a k ~ k + l ) + q C  NkNk+l (1) 
k k k k 

where Nk = a:ak and the basic equation for the operator a,(t) is 

One can define q, ( t )  in the Heisenberg representation as follows (Mekhankov and 
Fedyanin 1984) 

q n ( t )  =(olan(t)lO)= (01 V’anVIO) 

where 

a, 10) = 0. 1 v = A - ’  1 +C ( a , ( t ) a ;  - a:( t ) a n )  
( n  

When proceeding to the continuum limit qn( t )  + q ( x ,  t ) ,  one easily obtains the 

(3) 

in which all the highest terms (with respect to non-linearity and dispersion) are dropped. 
Introducing dimensionless variables ( T, 6 )  

perturbed S3 equation 

ihd(x, t )  = (P+2P)Cp(X, t ) + 2 1 * ’ a 0 9 3 x ,  r)+CLao2cPxx(x, t )+2qlcp12dx,  t )  

equation (3) becomes 

icPI=(Pss+acp+P~T+YlrPI2~ 
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(4) 
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where 

P P P 

We rewrite (4) in the form of a system of two equations for the real and imaginary 
parts of the wavefunction cp = U + i v  

U, = U,, + (Yu - pv, + y ( u2 + U') v 

U, = -U(* - au - pur - y( u2+ v2 )u .  

We consider the dependent variable transformations 

Substituting these equations into ( 5 ) ,  we have 

( D : - ~ ) F .  F =  y ( ~ 2 + ~ 2 )  

D,G* F=(D:-PD,)H*F 

D,H* F=(-D;-PD,)G* F. 

Here bilinear operators are defined by (Hirota 1973) 

(7) 

Then, the one-envelope-soliton solution of equations (7) with a > 0 and y < 0 is 

G = Bo+ Be"+"* 

given by 

F = A,+ Ae"+"* H = CO+ Ce"+"* 

where 77 = K.$-SZT + v0, k, SZ and 77' are constants, and the real constants A,, A, Bo, 
B, CO and C satisfy the following equations: 

-aA;= y(B;+ Ci) 

[ ( K  4- K*)'  - a]A ,A= ?(BOB + cot) 

-aA2 = y( B' + C') 

(a + a * ) ( B o A  - AoB) = ( K  + K * ) ~ ( A , C  + CoA) - P ( K  + K*)(A,C - C,A) 

(SZ+SZ* ) (  CoA - AoC)  = - ( K  + K * ) ~ ( A ~ B +  BOA) - P ( K  + K * ) ( A ~ B  - BOA). 

It is easy to obtain the simple solutions of (4) as follows: 

I / '  Sl+iS2Goexp[S3&5-(S2/Sl)(a -S,p&)~+77~+77$]  

1 + G , e x p [ S 3 ~ S - ( S 2 / S l ) ( a  - S 3 P & d . r + ~ o + ~ $ l  cp(5,r) = (-;) 

where Go is an arbitrary real constant, Sj = +1 or -1  ( j  = 1,2 ,3) .  
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In conclusion, we have obtained the one-envelope-soliton solutions of the perturbed 
S3 equation in a quasi-one-dimensional crystal. The N-envelope-soliton solutions will 
be discussed in another paper. 
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