A set of new solutions of the perturbed S3 equation in a quasi-one-dimensional crystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L885
(http://iopscience.iop.org/0305-4470/21/18/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A set of new solutions of the perturbed S 3 equation in a quasi-one-dimensional crystal

De-gang Zhang, You-quan Dan and Ke Fang
Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, People's Republic of China

Received 4 July 1988

Abstract

Mekhankov and Fedyanin have obtained several solutions for the perturbed S3 equation. We find the one-envelope-soliton solutions of the same equation by the Hirota bilinear method

A wide class of quasi-one-dimensional systems of quantum statistical mechanics may be described to a good approximation by the following model Hamiltonian:
$H=E_{0}+p \sum_{k} N_{k}+\mu \sum_{k}\left(a_{k}^{+} a_{k+1}+a_{k+1}^{+} a_{k}\right)+\mu^{\prime} \sum_{k}\left(a_{k}^{+} a_{k+1}^{+}-a_{k} a_{k+1}\right)+q \sum_{k} N_{k} N_{k+1}$
where $N_{k}=a_{k}^{+} a_{k}$ and the basic equation for the operator $a_{f}(t)$ is

$$
\begin{gather*}
i \hbar \dot{a}_{f}(t)=p a_{f}(t)+\mu\left[a_{f+1}(t)+a_{f-1}(t)\right]+\mu^{\prime}\left[a_{f+1}^{+}(t)-a_{f-1}^{+}(t)\right] \\
+q\left[N_{f+1}(t)+N_{f-1}(t)\right] a_{f}(t) \tag{2}
\end{gather*}
$$

One can define $\varphi_{n}(t)$ in the Heisenberg representation as follows (Mekhankov and Fedyanin 1984)

$$
\varphi_{n}(t)=\langle 0| a_{n}(t)|0\rangle=\langle 0| V^{+} a_{n} V|0\rangle
$$

where

$$
V=\lambda^{-1}\left(1+\sum_{n}\left(\alpha_{n}(t) a_{n}^{+}-\alpha_{n}^{*}(t) a_{n}\right)\right) \quad a_{n}|0\rangle=0 .
$$

When proceeding to the continuum limit $\varphi_{n}(t) \rightarrow \varphi(x, t)$, one easily obtains the perturbed S3 equation
$\mathrm{i} \hbar \dot{\varphi}(x, t)=(p+2 \mu) \varphi(x, t)+2 \mu^{\prime} a_{0} \varphi_{x}^{*}(x, t)+\mu a_{0}^{2} \varphi_{x x}(x, t)+2 q|\varphi|^{2} \varphi(x, t)$
in which all the highest terms (with respect to non-linearity and dispersion) are dropped. Introducing dimensionless variables (τ, ξ)

$$
\tau=\frac{\mu}{\hbar} t \quad \xi=\frac{x}{a_{0}}
$$

equation (3) becomes

$$
\begin{equation*}
\mathrm{i} \varphi_{\tau}=\varphi_{\xi \xi}+\alpha \varphi+\beta \varphi_{\xi}^{*}+\gamma|\varphi|^{2} \varphi \tag{4}
\end{equation*}
$$

where

$$
\alpha=2+\frac{p}{\mu} \quad \beta=\frac{2 \mu^{\prime}}{\mu} \quad \gamma=\frac{2 q}{\mu} .
$$

We rewrite (4) in the form of a system of two equations for the real and imaginary parts of the wavefunction $\varphi=u+i v$

$$
\begin{align*}
& u_{\tau}=v_{\xi \xi}+\alpha v-\beta v_{\xi}+\gamma\left(u^{2}+v^{2}\right) v \\
& v_{\tau}=-u_{\xi \xi}-\alpha u-\beta u_{\xi}-\gamma\left(u^{2}+v^{2}\right) u . \tag{5}
\end{align*}
$$

We consider the dependent variable transformations

$$
\begin{equation*}
u=\frac{G(\xi, \tau)}{F(\xi, \tau)} \quad v=\frac{H(\xi, \tau)}{F(\xi, \tau)} \quad F=F^{*}, G=G^{*}, H=H^{*} \tag{6}
\end{equation*}
$$

Substituting these equations into (5), we have

$$
\begin{align*}
& \left(D_{\xi}^{2}-\alpha\right) F \cdot F=\gamma\left(G^{2}+H^{2}\right) \\
& D_{\tau} G \cdot F=\left(D_{\xi}^{2}-\beta D_{\xi}\right) H \cdot F \tag{7}\\
& D_{\tau} H \cdot F=\left(-D_{\xi}^{2}-\beta D_{\xi}\right) G \cdot F
\end{align*}
$$

Here bilinear operators are defined by (Hirota 1973)
$\left.D_{\xi}^{m} D_{\tau}^{n} a(\xi, \tau) \cdot b(\xi, \tau) \equiv\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \xi^{\prime}}\right)^{m}\left(\frac{\partial}{\partial \tau}-\frac{\partial}{\partial \tau^{\prime}}\right)^{n} a(\xi, \tau) b\left(\xi^{\prime}, \tau^{\prime}\right)\right|_{\xi=\xi^{\prime}, \tau=\tau^{\prime}}$.
Then, the one-envelope-soliton solution of equations (7) with $\alpha>0$ and $\gamma<0$ is given by

$$
F=A_{0}+A \mathrm{e}^{\eta+\eta^{*}} \quad G=B_{0}+B \mathrm{e}^{\eta+\eta^{*}} \quad H=C_{0}+C \mathrm{e}^{\eta+\eta^{*}}
$$

where $\eta=\kappa \xi-\Omega \tau+\eta^{0}, k, \Omega$ and η^{0} are constants, and the real constants A_{0}, A, B_{0}, B, C_{0} and C satisfy the following equations:

$$
\begin{aligned}
& -\alpha A_{0}^{2}=\gamma\left(B_{0}^{2}+C_{0}^{2}\right) \\
& {\left[\left(\kappa+\kappa^{*}\right)^{2}-\alpha\right] A_{0} A=\gamma\left(B_{0} B+C_{0} C\right)} \\
& -\alpha A^{2}=\gamma\left(B^{2}+C^{2}\right) \\
& \left(\Omega+\Omega^{*}\right)\left(B_{0} A-A_{0} B\right)=\left(\kappa+\kappa^{*}\right)^{2}\left(A_{0} C+C_{0} A\right)-\beta\left(\kappa+\kappa^{*}\right)\left(A_{0} C-C_{0} A\right) \\
& \left(\Omega+\Omega^{*}\right)\left(C_{0} A-A_{0} C\right)=-\left(\kappa+\kappa^{*}\right)^{2}\left(A_{0} B+B_{0} A\right)-\beta\left(\kappa+\kappa^{*}\right)\left(A_{0} B-B_{0} A\right)
\end{aligned}
$$

It is easy to obtain the simple solutions of (4) as follows:
$\varphi(\xi, \tau)=\left(-\frac{\alpha}{\gamma}\right)^{1 / 2} \frac{\delta_{1}+\mathrm{i} \delta_{2} G_{0} \exp \left[\delta_{3} \sqrt{\alpha} \xi-\left(\delta_{2} / \delta_{1}\right)\left(\alpha-\delta_{3} \beta \sqrt{\alpha}\right) \tau+\eta_{0}+\eta_{0}^{*}\right]}{1+G_{0} \exp \left[\delta_{3} \sqrt{\alpha} \xi-\left(\delta_{2} / \delta_{1}\right)\left(\alpha-\delta_{3} \beta \sqrt{\alpha}\right) \tau+\eta_{0}+\eta_{0}^{*}\right]}$
$\varphi(\xi, \tau)=\left(-\frac{\alpha}{\gamma}\right)^{1 / 2} \frac{\delta_{1} G_{0} \exp \left[\delta_{3} \sqrt{\alpha} \xi+\left(\delta_{2} / \delta_{1}\right)\left(\alpha+\delta_{3} \beta \sqrt{\alpha}\right) \tau+\eta_{0}+\eta_{0}^{*}\right]+\mathrm{i} \delta_{2}}{1+G_{0} \exp \left[\delta_{3} \sqrt{\alpha} \xi+\left(\delta_{2} / \delta_{1}\right)\left(\alpha+\delta_{3} \beta \sqrt{\alpha}\right) \tau+\eta_{0}+\eta_{0}^{*}\right]}$
$\varphi(\xi, \tau)=\left(-\frac{\alpha}{2 \gamma}\right)^{1 / 2}\left(\delta_{1}+\mathrm{i} \delta_{2}\right) \frac{1-G_{0} \exp \left[\delta_{3} \sqrt{2 \alpha} \xi-\left(\delta_{2} \delta_{3} / \delta_{1}\right) \beta \sqrt{2 \alpha} \tau+\eta_{0}+\eta_{0}^{*}\right]}{1+G_{0} \exp \left[\delta_{3} \sqrt{2 \alpha} \xi-\left(\delta_{2} \delta_{3} / \delta_{1}\right) \beta \sqrt{2 \alpha} \tau+\eta_{0}+\eta_{0}^{*}\right]}$
where G_{0} is an arbitrary real constant, $\delta_{j}=+1$ or $-1(j=1,2,3)$.

In conclusion, we have obtained the one-envelope-soliton solutions of the perturbed S 3 equation in a quasi-one-dimensional crystal. The N -envelope-soliton solutions will be discussed in another paper.

References

Mekhankov V G and Fedyanin V K 1984 Phys. Rep. 1041
Hirota R 1973 J. Math. Phys. 14805

